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ABSTRACT

In the Lorentz gauge, the solutions to the scalar and vector
potential equations (free space) are the retarded potentials, which
are integrals of charge and current distributions over all space,
subject to the retardation condition. It is shown that if the charge
and current are "turned on" in the finite past (t' ), integrals
over a finite region result, in particular, over an expanding
sphere of radius ct, centered at the field point. The limits of in-
tegration, which are time and space dependent, have been ob-
tained. The corresponding expressions for A and , have been
used to derive E = -v - A/at for an arbitrary charge and cur-
rent distribution. This involves the partial derivatives of the
densities in volume integrals, surface integrals which vary as
1/ct, and other integrals which vanish due to the geometry. The
formulation is valid for times t (r sin 0)/c.
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CALCULATION OF THE RETARDED ELECTRIC FIELD FOR
AN ARBITRARY CHARGE AND CURRENT DISTRIBUTION

INTRODUCTION

Maxwell's equations for the fields E and B give rise to equations for the potentials
A and , which are in general coupled and unsymmetric. Imposing the Lorentz gauge (in
free space)

1 a9 (V A + - =~ 0
c2 at

uncouples the equations and makes them symmetric; they become the wave equations,
whose solutions (1) are the well-known "retarded potentials":

0
A(r, t) = ;;

and

('(r t) = I

I1a1 space

11 space

J (r, t - Icr-rI dv')

ir -r ' I

p (r', t - Ir- rI )
r c dv'

Ir- rI

where, according to the retardation prescription, the charge density p and the current
density J are evaluated at the point r' at the retarded time t' = t - ( Ir- r' /c) as indi-
cated. The field point is r, and the variable of integration is r'. The electric field is
then given by

E = -v- - at. (3)
a9t

Formally, Eqs. (1) and (2) are integrals over all space (as indicated), so that Eq. (3) be-
comes, formally,

E(r, t) = -1
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However, these integrals over all space can be replaced by integrals over a finite
volume, assuming that the current and charge were turned on in the finite past, say, at
t = to e Peo This fact leads to a somewhat different form for E; instead of an integral

over all space of a partial derivative, one gets an integral over a finite volume of a par-
tial derivative, plus a surface integral which varies as 1/( t - to). This applies to both
the V'D and the dA/ t integrals. The volume integrals are performed over a sphere of
radius ct, centered at the field point r. The surface integrals are performed over the
surface of this sphere. If either t approaches + or to approaches - (charge and cur-
rent created in the infinite past), the volume integrals will extend over all space and the
surface integrals will vanish, leaving only terms like those in Eq. (4).

These results will be derived in this report, along with the explicit geometry in-
volved, including the limits of integration, and some remarks on the applicability of the
results. For simplicity it will be assumed that to = 0 (charge and current are turned on
at time t' = 0) and the electric field due to such arbitrary sources will be computed for
times t 0. Before proceeding, the notation should be made clear; (r, t) represents
the field point and the time t when we wish to calculate a quantity at the field point.
These are parameters in relation to the integration over (r', et3 which represents the
location of a volume element and the retarded time tet = t (r - r' /c) at which the
contribution of charge or current from this volume element is added to the integral (in
accordance with the retardation prescription).

CALCULATION OF A(r, t)/at AND V$(r, t)

The retarded vector potential is given by Eq. (1), which includes the retardation
condition

Ir - r' = c(t - t') (5)

The condition in Eq. (5) is applied to p (r', t') and J( r', t') and dictates that the contri-
bution from charge or current all around the spherical shell of thickness r' and radius
I r - r' I given by Eq. (5) is all added to the integrals for ( and A at the time t' in the
interval t'. By Eq. (5), the shell of maximum radius, therefore, contains charge or
current which existed at the earliest t'. Therefore, since the sources were turned on
at t' = 0, the integration is carried on within a spherical volume centered at r with
the radius given by Eq. (5), setting t' = 0:

r - r' = ct . (6)

This is the finite volume of integration alluded to earlier. If one now calculates A(r) at
the times t and t + At, it will have changed during the interval At due to two effects:

1. From a given shell of radius r - r' , J (r') must be calculated at the slightly
later time t ' + At = t + At - ( I r - r' /c), instead of at t' = t -r - r' I /c ). So J in each
shell is different.

2. The contribution from the shell of radius I r - r' = c( t + At) must be added; J is
calculated for t' = o.

This means that A(r, t)/at has two parts:

1. A finite volume integral

aj

47r Iri dv
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2. What amounts to a surface integral, something like

7 (dt r - [on the ) ds
surface

where dIr - r' I/dtn the surface is the rate of expansion of the spherical* volume (over
which integration is allowed) and f J ds/ct is the "volume" integral of the extra shell of
thickness dr- r' that is added during dt (note that r- r' on the surfaceiS equal to ct.
It is important to take note of exactly how the integration will be done: the spherical
volume centered at the field point r with radius ct will be integrated over by intersect-
ing it with a succession of spherical shells centered at a different point, namely, the
origin of coordinates.t These shells have nothing to do with the "shells" alluded to
earlier, which were introduced only to show the plausibility of the appearance of a sur-
face integral in E(r, t).

The precise formulation is as follows: A(r, t) is a triple integral given by

h3 ( r, t )

A(r, t) = 4 r 2 dr'
g3(r t)

h2 (r' ,r, t)

; sin a' do'
*2 ( r' ,r t )

h l ( r l,0 ,r , t )

| F( ', ',r', t, , ) d,
gl ( ,0 ,r, t)

j (rt -Ir - r' I)
(r t - l

Ir - r' 
For convenience, define

h 

Q do' E;,

I1

(7)

so that A(r, t) is of the form

A(r, t) = o
4 77

Now using the appropriate formulas
one obtains

rh3 h 2

3 r 2 dr' sin o' d 'Q .

3 2

(8)

for the derivative of an integral with variable limits,

*The idea of contributions from different shells at different times is explained in a somewhat differ-
ent connection in Ref. 1.
The situation of the field point with respect to the origin is shown in Fig. 1. The explicit limits of
integration are obtained in Appendix A with reference to Figs. 1, 2, and 3.

where
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h3(r. t) h2 (r' ,r, t)
aA(r, t) = $ r'2 dr' 5 sin 0' dO' aQ +

h3(r, t) r2(rtr, t)

- r2 dr [ag2(r Q]
g3 (r t)

h3( r t) rah r' t 1S r 2 dr' [a2( r ; )

, t)h2[h3(t),rt
3(rs t) 2 Q sin 0 dO'

=g2 + t B2[h3(t),rt]

"g3(rt) h2[h3(t),r,t]
at Q sin ' do'. (9)

g 2
1 h3 ( t ), r .t

Rather fortuitously, the last four integrals are zero (Appendix B). Recalling also
from Appendix A the fact that all the limits (on r', 0', and ') are situated symmetri-
cally with respect to the field coordinates r, 0, and , Q becomes

(+A4' JretardedQ =| " ' do',~= J jr - r'I
and again applying the appropriate formula for the derivative of an integral with variable
limits,

0+AO' aJretarded
dQ =. ' at do'+
at O-,Aog' Jr - r't

Jretarded
(at ) r- r'l I O+O

- ( a A,,)(Jretarded)
T t Ir- r' I ct =0ne o

Then, since at the limits of ', fIr - r' = c t,* one obtains

Ifff
spherical
volume

aJretarded
at v'

I r - r 'I dv

spherical
surface

r' dr f sin 0' d' (-at A5)E )

q0- A4' I
+ J(r',O',t'=O)
ctj

A similar procedure for V(r, t) givest

*The limits of /' correspond to the surface of the sphere of integration,whence r - r' I = c t there.
Note that J is also evaluated on the surface in this term.

thn the case of V@, the surface integral arises because the derivative operation of the volume ele-
ment with respect to the field point coordinates involves the difference between a spherical volume
integral centered at the field point r and one centered at r + 8 r. The difference between these two
volume integrals is a surface integral.

aA(rt) 4o
a t 477

(10)
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V((r, t) = 41s

fIf
spherical
volume

v (Pret arded dv'r -rII

++of
spherical
surface

r'2 drIf sin ' d' V(AOs') [p(rI0I'wt:= )
+ p(r',0', t'

Ct

This latest result for V is valid only if V is taken in spherical operator coordi-
nates. On the other hand, the equation giving A/ t is valid only if A is computed in rec-
tangular Cartesian coordinates. Therefore, the components of E are not obtained by
simply adding -D and -A/ t components as they are directly computed from the inte-
grals. The integrals for dA/d t give artesian components, while the integrals for V D
give spherical components. The choice is to transform one or the other of these so that
they can be added to give either the Cartesian or the spherical components of E. The
reason for this is that, on the one hand, it is the spherical coordinates which appear in
the limits of (thus each spherical component of V has a corresponding coordinate in
the limits of (D), so that each component of V on is analogous to d/d t on A and gives
the same simple integral form. It is not clear what integral form the direct Cartesian
operation of V on (D would give. On the other hand, only in Cartesian coordinates does
the equation 52A = p0 J/4,7 split up into three equations (2) whose solutions are

A = of Jret dv I_F7fIr -rd
Thus, A/d t is of necessity a vector computed in Cartesian components. With these facts
in mind, the integrals for -v(D and -A/ t can be "added" to give the total electric field.

Putting in the explicit limits of integration, E then takes the form

O -k
r'2 dr'

0-k

sin ' dO' f+Ack

qS-AX '

do' 
4 ± V

p (r I , t c )( - r'

Ir - r' I

a

d-J (r',0',t -

Ir - r' I

0+k

r 2 d $
Ok

sin O' d'{ - IV(A¢')[p(r', O', + AO',t O)

+ p(r' ,O' , - A>', t = )]

go [( ( )] [J(r ,0 ,¢O+A¢O,'t =O) + (r',0',O-AO', t = )]} (11)

= 0)]

r + c t
E=- _

r c t

.+ 0
4 77

Ir- r' I)
c

r+c t

rc t
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where

AO' = sin-' q'sin k - cos 2 k tan 2 (0'-d)

and

k = cos- 1 r2 + r1 2 - (ct) 2

2rr'

Equation (11) gives the retarded electric field due to an arbitrary charge and current
distribution which are turned on at time t' = . The first two terms comprise an inte-
gral over the finite sphere centered at r with radius ct. The second two terms com-
prise an integral over the surface of this finite sphere and vary as (c t)- 1. They are,
therefore, less significant as time goes on.

REMARKS

This formulation is valid only for times t (r sin 0)/c, the reason being that for
greater times, the allowed sphere of integration will engulf a part of the Z axis. Once
this happens, the spherical volume of radius ct centered at r can no longer be integrated
by intersecting it with spherical shell volume elements centered at the origin. The vol-
ume integration becomes much more involved, and an extremely complicated set of lim-
its would have to be found. Figure 4 depicts such a situation, where the limits used in
this report apply only in the shaded region, which does not cover the whole sphere. The
limits used in this report correspond to Figs. 1, 2, and 3, in which such a condition has
not been reached. Since the allowed sphere of integration must not reach the Z axis, it
is probably desirable to put the origin and the field point on opposite sides of the charge
distribution (if the charge distribution is localized to permit this), so that the effects of
the entire charge distribution can be accounted for in computing E. On the other hand, if
it is necessary to take into account some inherent symmetry of the charge distribution
by situating the origin in the midst of the charge, then it must be remembered that any
region of charge which cannot be contained within a sphere centered at the field point that
does not engulf part of the Z axis cannot be taken into account by this formulation. Since
the size of the sphere gives the upper limit t for which E(r, t) can be accurately calcu-
lated, this amounts to a possible tradeoff between symmetry and time interval of validity:
to make the calculation valid for the longest time the origin should be taken as far away
from the field point as possible. To take advantage of symmetry of the charge distribu-
tion, the origin might have to be placed in a position fairly close to the field point or in
the midst of the distribution, which would limit the time of validity of the result E(r, t).

It should be reemphasized that the turning on of the distribution in the finite past is
what allowed the volume integral over all space to reduce to a finite volume for A and ,
and this in turn introduced surface terms in E which vary inversely with ct.

CONCLUSIONS

The solution to the equations for A and in free space and with the Lorentz gauge
imposed are the retarded potentials, which are, by the nature of the solution to the dif-
ferential equations, integrals over all space. The assumption that the charge and current
sources were turned on in the finite past (at time t = o), allowed (due to retardation con-
dition) integration over a finite sphere centered at the field point, and this in turn led to
both volume and surface integral contributions to the electric field E. The specific
geometry involved and the limits of integration were obtained. The surface integrals
were seen to vary inversely with ct and, hence, are less important as time goes on.
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SPHERICAL VOLUME
OF INTEGRATION

Fig. 1 - Geometry for the calculation of the regarded
potentials, showing the field point r and the expand-
ing spherical volume of integration. The variables r,
0, and of the field point are parameters in the in-
tegration. The vector r' is a representative point in
the volume, and its coordinates are r', ',and '.
The origin is at 0.

z

Fig. 2 - The limits on '. The lower limit
is OL, and the upper limit is ' . They are
symmetrically situated at an angle AO' on
either side of 0 (the field point angle).
From the figure and the cosine law it is
clear that cos AO' = [r 2 + r' 2 - (ct) 2]/2rr',
0 = 0 + A', and OL = 0 - A'. A spheri-
cal shell, centered at the origin, is depicted
intersecting the spherical volume centered
at the field point, r. Such shells of suc-
cessive radii can cover the entire sphere,
until the sphere intersects the Z axis.

7
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Fig. 3 - Limits on O'. The center of this circle
lies on the radius vector r. A measure of the limit
on I' is x, a measure of O' is , and a measure
of the limit on 0' is P. The circle is the intersec-
tion of a typical spherical shell of radius r' cen-
tered at 0 with the spherical volume of integration
of radius c t centered at r.

x

z

Fig. 4 - The condition of the "bubble" of integration for times
t < (r sin 0)/c. In the shaded region, the limits for O' have the

same functional dependence on 0', r', r, and t as before. In the
unshaded region, a completely different set of limits applies.

A singularity in these when t approaches 0 occurs only if there is charge present at the
field point when the distribution is turned on, and such singularity conditions must be
avoided in any case.* It was shown that the formulation is valid for times t < (r sin 0)/c
and that the origin of coordinates must be chosen with this restriction in mind. In the
calculation of V7 and aA/ t the appropriate formulas were applied for taking the deriva-
tive of integrals with variable limits. This led to a host of integrals, most of which,
however, were seen to vanish. The remaining integrals should be programmable on a
computer without serious difficulty.
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here when t approaches 0 is no more and no less than a singularity due to any charge present at
the field point and must be dealt with accordingly.
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Appendix A

DETERMINATION OF THE LIMITS OF INTEGRATION

The volume of integration is a sphere of radius I r - r' I = c t, whose center is at the
field point r (Fig. 1). The spherical volume is integrated by intersecting it with a series
of spherical shells centered at the origin 0 with radii r'. Each such shell intersects the
sphere in a circle, which determines the limits on ' and '. The limits on ' depend
on r', and the limits on ' depend on '. It is clear that the limits on r', 0' and '
are situated symmetrically with respect to r = (r, o sb). Therefore, the upper and lower
limits on these variables may be written, respectively, as

rL = r - Ar'

ru = r + Ar'
tJ

OL = 0 - AO'

O = 0 + A0'
U

with u and L representing the "upper limit" and "lower limit," respectively.

The variables Ar', A', and A' can be determined as follows:

1. From inspection of Fig. 2,

Ar = ct .

2. AO' is calculated from the cosine rule (Fig. 2)

c2 t 2 = r2 + r 2 - 2rr' cos A'

and

Ad' r 2 + 12 - (ct) 2

2rr'

3. A' is calculated from the relationships in Fig. 3:

x = r sin '

x2 + 2 = 2

= q tan (0'- 0),

and

q = r' cos A0'.

Therefore,

v'sin2 A0 - cos2 A' tan 2 (0'-_0)

AO' = sin 1 Vsin 2 AO' - os2 AO' tan2 ( -0)

9
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Appendix B

VANISHING INTEGRALS

The last four integrals in Eq. (9) all vanish for essentially the same reason, which
is related to the particular way in which the limits on ' depend on O' and the limits on
0' depend on r' and to the symmetry of these limits. In the first two of these integrals,
one must first evaluate Q at the upper and lower limits of '. From the geometry of
Fig. 3 or from Eq. (A3) it is seen that at both of these limits (0' - 0 = ±AO), A' = 0.
This means that at both of these ' limits, Q is given by

Q = | d'F = .

In the second two of these integrals, one must integrate Q between the lower and upper
limits of ' subject to the condition that r' takes on its upper or lower limit, respec-
tively. From the geometry of Fig. 2 or from Eq. (A2) it is seen that at both of these
limits (r' - r = + ct), A' = 0. This means that at both of these r' limits the integrals
of Q are

J Q sin O' d' = 0

Q.E.D.
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